
1

Chapter 1

The MBASE Life Cycle Architecture Milestone
Package
No Architecture Is An Island

Barry Boehm, Dan Port, Alexander Egyed, and Marwan Abi-Antoun
Center for Software Engineering, University of Southern California, Los Angeles, CA 90089

Key words: Software architecture, systems architecting, architecture evaluation, model-
based development, rationale capture.

Abstract: This paper summarizes the primary criteria for evaluating software/system
architectures in terms of key system stakeholders’ concerns. It describes the
Model Based Architecting and Software Engineering (MBASE) approach for
concurrent definition of a system’s architecture, requirements, operational
concept, prototypes, and life cycle plans. It summarizes our experiences in
using and refining the MBASE approach on 31 digital library projects. It
concludes that a Feasibility Rationale demonstrating consistency and
feasibility of the various specifications and plans is an essential part of the
architecture’s definition, and presents the current MBASE annotated outline
and guidelines for developing such a Feasibility Rationale.

1. ARCHITECTURE EVALUATION CRITERIA

A good software/system architecture satisfices among a number of
potentially conflicting concerns. Table 1 (from Gacek et al., 1995),
summarizes the major architecture-related concerns of a number of system
stakeholders. These serve as a set of evaluation criteria for the architecture.

For example, the customer is likely to be concerned with getting first-
order estimates of the cost, reliability, and maintainability of the software
based on its high-level structure. This implies that the architecture should be
strongly coupled with the requirements, indicating if it can meet them. The
customer will also have longer-range concerns that the architecture be

Published in the Proceedings of the 1st Working IFIP International Conference on
Software Architecture (WICSA), San Antonio, TX, February 1999, pp. 511-528

2 Chapter 1

compatible with corporate software product line investments. Users need
software architectures in order to be able to clarify and negotiate their
requirements for the software being developed, especially with respect to
future extensions to the product. The user will be interested at the
architecting stage in the impact of the software structure on performance,
usability, and compliance with other system attribute requirements. As with
architectures of buildings, users also need to relate the architecture to their
usage scenarios.

Table 1. Stakeholder Concerns as Architecture Evaluation Criteria.
Stakeholder Concerns / Evaluation Criteria
Customer • Schedule and budget estimation

• Feasibility and risk assessment
• Requirements traceability
• Progress tracking
• Product line compatibility

User • Consistency with requirements and usage scenarios
• Future requirement growth accommodation
• Performance, reliability, interoperability, other quality attributes

Architect
and
System Engineer

• Product line compatibility
• Requirements traceability
• Support of tradeoff analyses
• Completeness, consistency of architecture

Developer • Sufficient detail for design and development
• Framework for selecting / assembling components
• Resolution of development risks
• Product line compatibility

Interoperator • Definition of interfaces with interoperator’s system
Maintainer • Guidance on software modification

• Guidance on architecture evolution
• Definition of interoperability with existing systems

Architects and Systems Engineers are concerned with translating

requirements into high-level design. Therefore, their major concern is for
consistency between the requirements and the architecture during the process
of clarifying and negotiating the requirements of the system. Developers are
concerned with getting an architectural specification that is sufficient in
detail to satisfy the customer’s requirements but not so constraining as to
preclude equivalent but different approaches or technologies in the
implementation. Developers then use the architecture as a reference for
developing and assembling system components, and also use it to provide a
compatibility check for reusing pre-existing components. Interoperators use
the software architecture as a basis for understanding (and negotiating about)
the product in order to keep it interoperable with existing systems. The
maintainer will be concerned with how easy it will be to diagnose, extend or
modify the software, given its high-level structure.

1. The MBASE Life Cycle Architecture Milestone Package 3

2. THE MBASE LIFE CYCLE APPROACH

In order to determine whether a software/system architecture is
satisfactory, with respect to the criteria in Table 1, one needs considerably
more than a specification of components, connectors, configurations and
constraints. Considering the architecture as an island, entire of itself, puts
one at a serious disadvantage in evaluating its adequacy.

We have been developing, applying and refining an approach called
MBASE (Model-Based Architecting and Software Engineering) (Boehm-
Port, 1998) to address this issue. It focuses on ensuring that a project’s
product models (architecture, requirements, code, etc.), process models
(tasks, activities, milestones), property models (cost, schedule, performance,
dependability), and success models (stakeholder win-win, IKIWISI (I’ll
Know It When I See It), business case) are consistent and mutually
enforcing.

3. MBASE OVERVIEW

Figure 1 summarizes the overall framework used in the MBASE
approach to ensure that a project’s success, product, process and property
models are consistent and well integrated. At the top of Figure 1 are various
success models, whose priorities and consistency should be considered first.
Thus, if the overriding top-priority success model is to “Demonstrate a
competitive agent-based data mining system on the floor of COMDEX in 9
months,” this constrains the ambition level of other success models
(provably correct code, fully documented as a maintainer win condition). It
also determines many aspects of the product model (architected to easily
shed lower-priority features if necessary to meet schedule), the process
model (design-to-schedule), and various property models (only portable and
reliable enough to achieve a successful demonstration).

The achievability of the success model needs to be verified with respect
to the other models. In the 9-month demonstration example, a cost-schedule
estimation model would relate various product characteristics (sizing of
components, reuse, product complexity), process characteristics (staff
capabilities and experience, tool support, process maturity), and property
characteristics (required reliability, cost constraints) to determine whether
the product capabilities achievable in 9 months would be sufficiently
competitive for the success models. Thus, as shown at the bottom of Figure
1, a cost and schedule property model would be used for the evaluation and
analysis of the consistency of the system’s product, process, and success
models.

4 Chapter 1

Success Models
Win-Win, IKIWISI, Business-Case, Mission Models,...

Product Models
Domain
Artifacts
- Requirements
- Architecture
- Code
- Documentation
Packaging
- Embedded
- Shrink Wrap
- Turn Key
Product Line

...

Process Models
Life-Cycle
- Waterfall
- Evolutionary
- Incremental
- WinWin Spiral
Anchor Points
Risk Management
Activities
- CMM KPAs

...

Property Models
Cost & Schedule, Performance, Assurance, Usability,...

Evaluation &
Analysis

Product Development & Evolution Process
Milestone Content, Planning & Control

Entry/Exit
Criteria

V&V
Criteria

Figure 1. MBASE Integration Framework.

In other cases, the success model would make a process model or a
product model the primary driver for model integration. An IKIWISI (I’ll
know it when I see it) success model would initially establish a prototyping
and evolutionary development process model, with most of the product
features and property levels left to be determined by the process. A success
model focused on developing a product line of similar products would
initially focus on product models (domain models, product line
architectures), with process models and property models subsequently
explored to perform a business-case analysis of the most appropriate breadth
of the product line and the timing for introducing individual products.

3.1 Anchor Point Milestones

In each case, property models are invoked to help verify that the project’s
success models, product models, process models, and property levels or
models are acceptably consistent. It has been found advisable to do this
especially at two particular “anchor point” life cycle process milestones
summarized in Table 2 (Boehm, 1996).

The first milestone is the Life Cycle Objectives (LCO) milestone, at
which management verifies the basis for a business commitment to proceed
at least through an architecting stage. This involves verifying that there is at

1. The MBASE Life Cycle Architecture Milestone Package 5

least one system architecture and choice of COTS/reuse components which
is shown to be feasible to implement within budget and schedule constraints,
to satisfy key stakeholder win conditions, and to generate a viable
investment business case.

Table 2. Content of LCO and LCA Packages.
Milestone
Element

Life Cycle Objectives (LCO) Life Cycle Architecture (LCA)

Definition of
Operational
Concept

• Top-level system objectives and
scope

− System boundary
− Environment parameters and

assumptions
− Evolution parameters
• Operational concept
• Operations and maintenance

scenarios and parameters
• Organizational life-cycle

responsibilities (stakeholders)

• Elaboration of system objectives and
scope by increment

• Elaboration of operational concept by
increment

System
Prototype(s)

• Exercise key usage scenarios
• Resolve critical risks

• Exercise range of usage scenarios
• Resolve major outstanding risks

Definition of
System
Requirements

• Top-level functions, interfaces,
quality attribute levels, including:

− Growth vectors
− Priorities
• Stakeholders’ concurrence on

essentials

• Elaboration of functions, interfaces,
quality attributes by increment

− Identification of TBDs (to-be-
determined items)

• Stakeholders’ concurrence on their
priority concerns

Definition of
System and
Software
Architecture

• Top-level definition of at least one
feasible architecture

− Physical and logical elements and
relationships

− Choices of COTS and reusable
software elements

− Identification of infeasible
architecture options

• Choice of architecture and elaboration
by increment

− Physical and logical components,
connectors, configurations, constraints

− COTS, reuse choices
− Domain-architecture and architectural

style choices
− Architecture evolution parameters

Definition of
Life-Cycle
Plan

• Identification of life-cycle
stakeholders

− Users, customers, developers,
maintainers, interfacers, general
public, others

• Identification of life-cycle process
model

− Top-level stages, increments
− Top-level WWWWWHH* by stage

• Elaboration of WWWWWHH* for
Initial Operational Capability (IOC)

− Partial elaboration, identification of
key TBDs for later increments

Feasibility
Rationale

• Assurance of consistency among
elements above

− Via analysis, measurement,
prototyping, simulation, etc.

• Business case analysis for
requirements, feasible architectures

• Assurance of consistency among
elements above

• All major risks resolved or covered by
risk management plan

WWWWWHH: Why, What, When, Who, Where, How, How Much.

6 Chapter 1

The second milestone is the Life Cycle Architecture (LCA) milestone, at
which management verifies the basis for a sound commitment to product
development (a particular system architecture with specific COTS and reuse
commitments which is shown to be feasible with respect to budget, schedule,
requirements, operations concept and business case; identification and
commitment of all key life-cycle stakeholders; and elimination of all critical
risk items). The AT&T/Lucent Architecture Review Board technique
(Marenzano, 1995) is an excellent management verification approach
involving the LCO and LCA milestones. The LCO and LCA have also
become key milestones in Rational’s Objectory Process or Unified
Management (Rational, 1997; Royce, 1998).

4. EXAMPLE MBASE APPLICATION

4.1 Digital Library Multimedia Archive Projects

Our first opportunity to apply the MBASE approach to a significant
number of projects came in the fall of 1996. We arranged with the USC
Library to develop the LCO and LCA packages for a set of 12 digital library
multimedia applications. The work was done by 15 6-person teams of
students in our graduate Software Engineering I class, with each student
developing one of the 6 LCO and LCA package artefacts shown in Table 2.
Three of the 12 applications were done by two teams each. The best 6 of the
LCA packages were then carried to completion in our Spring 1997 Software
Engineering II class.

Table 3. Example Library Multimedia Problem Statements.
Problem Set #2: Photographic Materials in Archives
Jean Crampon, Hancock Library of Biology and Oceanography

There is a substantial collection of photographs, slides, and films in some of the Library’s
archival collections. As an example of the type of materials available, I would like to suggest
using the archival collections of the Hancock Library of Biology and Oceanography to see if
better access could be designed. Material from this collection is used by both scholars on
campus and worldwide. Most of the Hancock materials are still under copyright, but the
copyright is owned by USC in most cases.

Problem Set #8: Medieval Manuscripts
Ruth Wallach, Reference Center, Doheny Memorial Library

I am interested in the problem of scanning medieval manuscripts in such a way that a
researcher would be able to both read the content, but also study the scribe’s hand, special
markings, etc. A related issue is that of transmitting such images over the network.

1. The MBASE Life Cycle Architecture Milestone Package 7

Project Objectives
Create the artifacts necessary to establish a successful life cycle architecture and plan for adding a
multimedia access capability to the USC Library Information System. These artifacts are:

1. An Operational Concept Definition
2. A System Requirements Definition
3. A System and Software Architecture Definition
4. A Prototype of Key System Features
5. A Life Cycle Plan
6. A Feasibility Rationale, assuring the consistency and feasibility of items 1-5

Team Structure
Each of the six team members will be responsible for developing the LCO and LCA versions of one of
the six project artifacts. In addition, the team member responsible for the Feasibility Rationale will serve
as Project Manager with the following primary responsibilities:

1. Ensuring consistency among the team members’ artifacts (and documenting this in the Rationale).
2. Leading the team’s development of plans for achieving the project results, and ensuring that project

performance tracks the plans.

Project Approach
Each team will develop the project artifacts concurrently, using the WinWin Spiral approach defined in
the paper "Anchoring the Software Process." There will be two critical project milestones: the Life Cycle
Objectives (LCO) and Life Cycle Architecture (LCA) milestones summarized in Table 1.
The LCA package should be sufficiently complete to support development of an Initial Operational
Capability (IOC) version of the planned multimedia access capability by a CS577b student team during
the Spring 1997 semester. The Life Cycle Plan should establish the appropriate size and structure of such
a team.

WinWin User Negotiations
Each team will work with a representative of a community of potential users of the multimedia capability
(art, cinema, engineering, business, etc.) to determine that community’s most significant multimedia
access needs, and to reconcile these needs with a feasible implementation architecture and plan. The
teams will accomplish this reconciliation by using the USC WinWin groupware support system for
requirements negotiation. This system provides facilities for stakeholders to express their Win Conditions
for the system; to define Issues dealing with conflicts among Win Conditions; to support Options for
resolving the Issues; and to consummate Agreements to adopt mutually satisfactory (win-win) Options.
There will be three stakeholder roles:

• Developer: The Architecture and Prototype team members will represent developer concerns, such as
use of familiar packages, stability of requirements, availability of support tools, and technically
challenging approaches.

• Customer: The Plan and Rationale team members will represent customer concerns, such as the need
to develop an IOC in one semester, limited budgets for support tools, and low-risk technical
approaches.

• User: The Operational Concept and Requirements team members will work with their designated user-
community representative to represent user concerns, such as particular multimedia access features,
fast response time, friendly user interface, high reliability, and flexibility of requirements.

Major Milestones
September 16, 1996 All teams formed
October 14, 1996 WinWin Negotiation Results
October 21-23, 1996 LCO Reviews
October 28, 1996 LCO Package Due
November 4, 1996 Feedback on LCO Package
December 6, 1996 LCA Package Due, Individual Critique Due

Individual Project Critique
The project critique is to be done by each individual student. It should be about 3-5 pages, and should
answer the question, "If we were to do the project over again, how would we do it better - and how does
that relate to the software engineering principles in the course?"

Figure 2. Multimedia Archive Project Guidelines.

8 Chapter 1

The multimedia archives covered such media as photographic images,
medieval manuscripts, Web-based business information, student films and
videos, video courseware, technical reports, and urban plans. The original
Library client problem statements were quite terse, as indicated in Table 3.
Our primary challenge was to provide a way for the student teams to work
with these clients to go from these terse statements to an LCO package in 7
weeks and an LCA package in 11 weeks.

We enabled the students and clients to do this by providing them with a
set of integrated MBASE models focused on the stakeholder win-win
success model; the WinWin Spiral Model as process model; the LCO and
LCA artifact specifications and a multimedia archive domain model as
product models; and a property model focused on the milestones necessary
for an 11-week schedule (see Figure 2). Further details are provided in
(Boehm et al, 1997) and (Boehm et al, 1998).

4.2 MBASE Model Integration for LCO Stage

The integration of these models for the LCO stage is shown in Figure 3.
The end point at the bottom of Figure 3 is determined by the anchor point
postconditions or exit criteria for the LCO milestone (Boehm, 1996): having
an LCO Rationale description which shows that for at least one architecture
option, that a system built to that architecture would include the features in
the prototype, support the concept of operation, satisfy the requirements, and
be buildable within the budget and schedule in the plan.

Domain Model

WinWin
Taxonomy

Basic Concept
of Operation

Frequent
Risks

Stakeholders,
Primary win conditions

WinWin
Negotiation

Model

IKIWISI Model,
Prototypes,

Properties Models

Environment
Models

WinWin Agreements

Viable
Architecture

Options

Updated Concept
of Operation

Life Cycle Plan
elements

Outstanding
LCO risks

Requirements
Description

LCO Rationale

Life Cycle Objectives (LCO) Package

Anchor Point
Model

determinesidentifiesidentifies
determines

 serves
 as table
 of
 contents
 for

situates exercise exercise focus
use of

 focus
 use of determines

guides
determination of validate

inputs for

provides

initialize adopt identify identify

update update

achieveiterate to feasibility, consistency
 determines exit
criteria for

determines content of

 validates readiness of

i
n
i
t
i
a
l
i
z
e
s

Figure 3. MBASE Model Integration: LCO Stage

1. The MBASE Life Cycle Architecture Milestone Package 9

The beginning point at the top of Figure 3 is the multimedia archive
extension domain model furnished to the students, illustrated in Figure 4.
The parts of the domain model shown in Figure 4 are the system boundary,
its major interfaces, and the key stakeholders with their roles and
responsibilities. The domain model also established a domain taxonomy
used as a checklist and organizing structure for the WinWin requirements
negotiation system furnished to the teams.

1. System Block Diagram:
This diagram shows the usual block diagram for extensions providing access to and
administration of multimedia information archive assets from an existing text-based
information archive (IA) System:

IA System O&M Support

Multimedia Asset Access
and Administration

Existing IA System

Users

IA System Infrastructure
IA System Infrastructure Opera.
and Maintenance (O&M)

Existing
Assets

Existing
Asset
Managers

Multimedia
Assets

Multimedia
Asset
Managers

Extended IA
System Boundary

The system boundary focuses on the automated applications portion of the operation,
and excludes such entities as users, operators, maintainers, assets, and infrastructure
(campus networks, etc.) as part of the system environment. The diagram abstracts out
such capabilities as asset catalogues and direct user access to O&M support and asset
managers.

2. Some Stakeholder Roles and Responsibilities
2.1 Asset Managers. Furnish and update asset content and catalogue descriptors.
Ensure access to assets. Provide accessibility status information. Ensure asset-base
recoverability. Support problem analysis, explanation, training, instrumentation,
operations analysis.
2.2-2.5 Similar roles and responsibilities defined for system operators, users,
maintainers, and infrastructure service providers.

Figure 4. Multimedia Archive Extension Domain Model

As shown at the left of Figure 3, this taxonomy was also used as the table

of contents for the requirements description, ensuring consistency and rapid
transition from WinWin negotiation to requirements specification. The
domain model also indicated the most frequent risks involved in multimedia
archive applications. This was a specialization of the list of 10 most

10 Chapter 1

frequent software risks in (Boehm, 1989), including performance risks for
image and video distribution systems; and risks that users could not fully
describe their win conditions, but would need prototypes (IKIWISI).

The sequence of activities between the beginning point and the LCO end
point were determined by the WinWin Spiral Model. As illustrated in Figure
5, this model emphasizes stakeholder win-win negotiations to determine
system objectives, constraints and alternatives; and early risk identification
and resolution via prototypes and other methods (Boehm-Bose, 1994).

2. Identify Stakeholders’
win conditions

1. Identify next-level
Stakeholders

6. Validate product
and process
definitions

. Review, commitment

5. Define next level of
product and process -
including partitions

4. Evaluate product and
process alternatives.
Resolve Risks

3. Reconcile win conditions.
Establish next level
objectives, constraints,
alternatives

Figure 5. The WinWin Spiral Model

4.3 Project Results

We were not sure how many of the 6-student teams would be able to
work concurrently with each other and with their Library clients to create
consistent and feasible LCO packages in 6 weeks and LCA packages in 11
weeks. With the aid of the integrated MBASE models, all 15 of the student
teams were able to complete their LCO and LCA packages on time (3 of the
applications were done separately by 2 teams). The Library clients were all
highly satisfied, often commenting that the solutions went beyond their
expectations. Using a similar MBASE and WinWin Spiral Model approach,
6 applications were selected and developed in 11 weeks in the Spring of
1997. Here also, the Library clients were delighted with the results, with one
exception: an overambitious attempt to integrate the three photographic-
image applications into a single product.

1. The MBASE Life Cycle Architecture Milestone Package 11

The projects were extensively instrumented, including the preparation of
project evaluations by the librarians and the students. These have led to
several improvements in the MBASE model provided to the student teams
for Fall 1997, in which 16 teams developed LCO and LCA packages for 15
more general digital library applications. For example, in 1996, the WinWin
negotiations were done before the LCO milestone, while the prototypes were
done after the LCO milestone. This led to considerable breakage in the
features and user interface characteristics described in the LCO documents,
once the clients exercised the prototypes. As a result, one of the top three
items in the course critiques was to schedule the prototypes earlier. This was
actually a model clash between a specification-oriented stakeholder win-win
success model and the prototype-oriented IKIWISI success model. The
1997 MBASE approach removed this model clash by scheduling the initial
prototypes to be done concurrently with the WinWin negotiations.

Another example was to remove several redundancies and overlaps from
the document guidelines: as a result, the 1997 LCO packages averaged 110
pages as compared to 160 in 1996. The 1997 LCA packages averaged 154
pages as compared to 230 in 1996. A final example was to strongly couple
the roles, responsibilities, and procedures material in the Operational
Concept Description with the product transition planning, preparation, and
execution activities performed during development. Further information on
the 1997-98 projects is provided in (Boehm et al., 1998). 1996-97 and 1997-
98 projects can be accessed via the USC-CSE web site at
http://sunset.usc.edu/classes/classes.html.

5. THE ARCHITECTURE FEASIBILITY
RATIONALE AS FIRST-CLASS CITIZEN.

As indicated in Table 2, the MBASE approach treats the Feasibility
Rationale as a first-class citizen in the Life Cycle Objective and Life Cycle
Architecture packages. For each of the LCO and LCA components in Figure
2, we have developed an annotated outline and set of guidelines for
producing the component. Below is the current version for the Feasibility
Rationale.

5.1 Document Overview

Why (Objective): The Feasibility Rationale (FR) is the glue that holds
the other components of the Life Cycle Objective (LCO) and Life Cycle
Architecture (LCA) packages together. It provides evidence of the feasibility
and consistency of the LCO and LCA package components.

12 Chapter 1

What (Content): The Feasibility Rationale includes a business case
analysis demonstrating that the resources invested in the project will
generate capabilities providing a satisfactory return on the investment. It also
includes several satisfaction rationales addressing the various aspects of this
question:

If I build the system using the given architecture and life cycle process,
will it satisfy the requirements, support the operational concept, remain
faithful to the key features determined by the prototype, and be achievable
within the budgets and schedules in the life cycle plan?

Intended Audience: The primary audiences are the LCO and LCA
Architecture Review Boards. The parts dealing with client satisfaction must
be understandable by the client representatives on the ARB. The technical
parts must be sufficiently detailed and well-organized to enable the peers and
technical experts to efficiently assess the adequacy of the technical rationale.
The FR is also of considerable value to developers and other stakeholders in
providing a rationale for key decisions made by the project.

Participants: The project manager is responsible for the overall content
of the FR. Frequently, the business case is prepared by the author of the
Operational Concept Description (OCD). Demonstrating the feasibility and
consistency of portions of the LCO and LCA packages is the shared
responsibility of the associated project participants. Other stakeholders may
make their concurrence on win-win agreements contingent on demonstration
of the agreement’s feasibility in the Feasibility Rationale.

High Level Dependencies: The thoroughness of the Feasibility
Rationale is dependent on the thoroughness of all the other LCO and LCA
components. Issues incompletely covered in the Feasibility Rationale are a
source of risk which should be covered in the Life Cycle Plan’s (LCP) Risk
Management section.

Overall Tool Support: Well-calibrated estimation models for cost,
schedule, performance, or reliability are good sources of feasibility rationale.
Others are prototypes, simulations, benchmarks, architecture analysis tools,
and traceability tools (See Table 4 below for further information). The
rationale capture capability in the WinWin tool is also useful.

5.2 Document Outline

This section provides a table of contents for the Feasibility Rationale.
Even though not all projects are alike, the people responsible for the
Feasibility Rationale should consider all of these items carefully. If it is felt
that some of them are not applicable, it should be noted as such for future
reference. Similarly, the document outline can be expanded if there is a need.

1. The MBASE Life Cycle Architecture Milestone Package 13

The recommended table of contents for the Feasibility Rationale document is
as follows:

1. Overview

1.1. Software Product Objectives
1.2. Feasibility Rationale Objectives

2. Product Rationale
2.1. Business Case Analysis

2.1.1. Development Cost Estimate
2.1.2. Operational Cost Estimate
2.1.3. Estimate of Value Added and Relation to Cost

2.2. Requirements Satisfaction
2.2.1. Capability Requirements
2.2.2. Interface Requirements
2.2.3. Quality Requirements
2.2.4. Evolution Requirements

2.3. Operational Concept Satisfaction
2.4. Stakeholder Concurrence

3. Process Rationale
3.1. System Priorities
3.2. Process Match to System Priorities
3.3. Consistency of Priorities, Process and Resources

The following will explain in more detailed each of the items above,

provide a rationale for them, show their dependencies to other sections
within this document and to other documents, provide examples of their use,
and give tool support recommendations whenever possible.

5.3 Document Guidelines and Rationale1

1. Overview

This section tells why the product and the plan are being developed.

1.1. Software Product Objectives
Provide a link to Section 1.1 of the Operational Concept Description
(OCD). It contains a short description, in user terms, of the primary
functions the product will perform, of its envisioned concept of
operation, and of the user benefits expected from the product.

1 Text in bold can be used as is. Text in roman font indicates where project specific
information needs to replace the general description provided. Text in italic font indicates
specialization for Software Engineering I that would likely be tailored differently for other
kinds of projects.

14 Chapter 1

1.2. Feasibility Rationale Objectives
• To demonstrate that a system built using the specified architecture
and life cycle process will satisfy the requirements, support the
operational concept remain faithful to the key features determined by
the prototype, and be achievable within the budgets and schedules in
the life cycle plan.
• To rationalise development decisions in a way the prime audience (the
customer and users) can understand
• To enable the customers to participate in the decision process and to
express their satisfaction with the product

Integration and Dependencies with other components:
• Item 1.1 is a link to the Objective items in Section 1.1 of the OCD.
• Item 1.2 may be used as is.

Additional guidelines:
None needed.

2. Product Rationale
This section furnishes the rationale for the product being able to satisfy
the system specifications and stakeholders (e.g. customer, user).

2.1. Business Case Analysis
The Section describes the impact of the product in mainly monetary
terms. How much does it cost to develop and to operate, how much
added value does it generate, and thus how high is its return on
investment. However, non-monetary factors may be also decisive. For
instance, “added value” can include the improved quality of the service
provided by the product.

2.1.1. Development Cost Estimate

Provide a summary of the full development cost, including hardware,
software, people, and facilities costs.

2.1.2. Operational Cost Estimate

Provide a summary of the operational cost. Include also maintenance and
administration cost and other costs which accumulate during transition of
the product into production use (e.g. training).

2.1.3. Estimate of Value Added and Relation to Cost

Provide a summary of cost with and without the product and how much
value is added by it. The value added may also describe non-monetary
improvements (e.g. quality, response time, etc.) which can be critical in
customer support and satisfaction. Include a return-on-investment analysis
as appropriate.

2.2. Requirements Satisfaction

1. The MBASE Life Cycle Architecture Milestone Package 15

This section summarizes how well a system developed to the product
architecture will satisfy the system requirements.

2.2.1. Capability Requirements

Show evidence that the system developed to the product architecture will
satisfy the capability requirements, e.g., “capability
described/demonstrated/exercised as part of included COTS component”,
with a pointer to the results. There is no need to restate obvious mappings
from the requirements to the architecture.

2.2.2. Interface Requirements
Show evidence that the system developed to the product architecture will
satisfy the interface requirements. These should include the interfaces and
standards associated with the University Computing Services infrastructure
and the USC Integrated Library System.

2.2.3. Quality Requirements
Show evidence that the system developed to the product architecture will
satisfy the quality requirements.

2.2.4. Evolution Requirements
Show evidence that the system developed to the product architecture will
satisfy the evolution requirements.

2.3. Operational Concept Satisfaction
Summarize product's ability to satisfy key operational concept elements,
such as scenarios.

2.4. Stakeholder Concurrence
Summarize stakeholder concurrence by reference to WinWin negotiation
results, memoranda of agreements, etc. Stakeholders may be anybody
involved in the development process. For instance, a developer may claim
that a certain response time cannot be achieved in a crisis mode unless
nonessential message traffic is eliminated. Similarly, a customer may claim
that the product does not satisfy his/her win conditions (e.g. cost). This
section serves as a record of how such claims were resolved to the
stakeholders’ satisfaction.

Integration and Dependencies with other components:

This section is highly dependent on all other documents. The cost
estimates in Item 2.1 are strongly dependent on development cost (from
LCP) and operational cost (from OCD). Item 2.2 maps requirements to
design, which create a high dependency between the System and Software
Requirements Description (SSRD), the System and Software Architecture
Description (SSAD), and often the prototype. Similarly, item 2.3 creates a
dependency between the OCD, the SSAD, and often the prototype. The
stakeholder concurrence in Item 2.4 provides the basis for stakeholders to

16 Chapter 1

ratify their commitment to the project LCO and LCA packages at the ARB
meetings.

Additional guidelines:

Table 4 summarizes the strengths and potential concerns for leading
architecture attribute analysis methods. The rationale capture capability in
the WinWin tool is also useful.

Table 4. Summary of Software Architecture Attribute Analysis Methods
Method Examples Strengths Potential Concerns

Current
ADLs

RDD-100, StP,
UML/Rose

• Static integrity (partial)
• Traceability

• Dynamic integrity
• Performance, cost, schedule analysis
• Subjective attributes

New
Generation
ADLs

Rapide, Unicon,
Wright

• Static, dynamic integrity
• Some performance

• Model granularity and scalability
• Cost, schedule, reliability, full

performance
• Subjective attributes

Scenario
Analysis

SAAM • Subjective attributes
− Usability, Modifiability
• Human-machine system

attributes (partial)
− Safety, security,

survivability

• Largely manual, expertise-dependent
• Scenario representativeness; method

scalability
• Verification/Validation/Accreditation
• Integrity, performance, cost, schedule

analysis
Simulation;
Execution

Network 2.5;
UNAS

• Performance Analysis
• Some dynamic integrity
• Some reliability,

survivability

• Model granularity and scalability
• Input scenario representativeness
• Verification/Validation/Accreditation
• Cost, schedule, subjective attributes

Parametric
Modeling

COCOMO et
al., Queuing
Models,
Reliability
Block Diagrams

• Cost, schedule analysis
• Reliability, availability

analysis
• Performance Analysis

• Subjective attributes
• Static, dynamic integrity
• Verification/Validation /Accreditation
• Input validation

3. Process Rationale

This sections describes the rationale of the development process being
able to satisfy the stakeholders (e.g. customer).

3.1. System Priorities
Summarize priorities of desired capabilities and constraints. Priorities may
express time and date but also quality and others. (e.g. performance).

3.2. Process Match to System Priorities
Provide rationale for ability to meet milestones and choice of process model
(e.g. anchor points in spiral model or increments, etc.).

3.3. Consistency of Priorities, Process and Resources

1. The MBASE Life Cycle Architecture Milestone Package 17

Provide evidence that priorities, process and resources match. E.g. budgeted
cost and schedule are achievable; no single person is involved on two or
more full-time tasks at any given time.

Integration and Dependencies with other components:

Like the previous section, this section is also highly dependent on other
documents, foremost the Life Cycle Plan (LCP) and System and Software
Requirements Description (SSRD). Item 3.1 maps primarily to the
capabilities in SSRD and milestones in LCP 2.2 and 2.3. Item 3.2 is a
summary of LCP 4.2 which emphasis on priorities above. Item 3.3 is
reasoning that the LCP is consistent and doable (especially LCP 4).

5.4 Potential Pitfalls/Best Practices

The Feasibility Rationale is highly dependent on other components.
Avoid duplicating these where mappings among components are obvious. In
writing the Feasibility Rationale you should keep in mind that the primary
audience is the Architecture Review Board (ARB), a mix of technical
experts and general stakeholders. Portions of the FR should be tailored to the
assessment needs of the various ARB members. Common pitfalls include
overreliance on vendor claims, neglect of critical off-nominal scenarios, and
overanalysis of low-priority issues.

5.5 Quality Criteria

The key quality criteria for the Feasibility Rationale are derived from its
pitfalls. It needs to be highly consistent with the other components and it
needs to be able to answer the key stakeholder questions about the feasibility
of the product. It also needs to present selected system views demonstrating
feasibility and consistency among the other components.

6. CONCLUSIONS

In specifying a software/system architecture, it is important not to treat
the architecture as an isolated island. The architecture needs to be related to
the operational concept it is supporting; the requirements the system will
satisfy; the life cycle plan identifying the system’s stakeholders, budgets and
schedules; and any prototypes providing views of the desired system.

The satisfaction of these relationships is best recorded in a Feasibility
Rationale for the architecture. For effective management review and
commitment to the architecture, it is essential that the Feasibility Rationale

18 Chapter 1

be a first-class citizen in the architecture package. It is encouraging to note
that this is so in the current draft of IEEE Standard 1471, “Recommended
Practice for Architecture Description”, (IEEE, 1998, Section 5.6)

7. REFERENCES

Boehm, B. (1989), Software Risk Management, IEEE-CS Press.
Boehm, B. (1996), “Anchoring the Software Process,” IEEE Software, July, pp. 73-82.
Boehm, B. and Bose, P. (1994), “A Collaborative Spiral Process Model Based on Theory W,”

Proceedings, ICSP3, IEEE.
Boehm, B., Egyed, A., Kwan, J., and Madachy, R. (1997), “Developing Multimedia

Applications with the WinWin Spiral Model,” Proceedings, ESEC/ FSE 97, Springer
Verlag.

Boehm, B., Egyed, A., Kwan, J., and Madachy, R. (1998), “Using the WinWin Spiral Model:
A Case Study,” IEEE Computer, July, pp. 33-44.

Boehm, B. and Port, D. (1998), “Conceptual Modeling Challenges for Model Based
Architecting and Software Engineering (MBASE)”, Proceedings, 1997 Conceptual
Modeling Symposium (P. Chen, ed.), Springer Verlag (to appear)

Gacek, C., Abd-Allah, A., Clark, B.K., and Boehm, B.W. (1995), “Focused Workshop on
Software Architectures: Issue Paper,” Proceedings of the ICSE 17 Workshop on Software
Architecture, April.

Garlan, D., Allen, R., and Ockerbloom, J. (1995), “Architectural Mismatch: Why Reuse is So
Hard,” IEEE Software, November, pp. 17-26.

IEEE Architecture Working Group (1998), “IEEE Recommended Practice for Architectural
Description, IEEE Std 1471, Draft Version 3.0, 3 July.

Kazman, R., Bass, L., Abowd, G., and Webb, M. (1994), “SAAM: A Method for Analyzing
the Properties of Software Architectures,” Proceedings, ICSE 16, ACM/IEEE, pp. 81-90.

Marenzano, J. (1995), “System Architecture Validation Review Findings,” in D. Garlan, ed.,
ICSE17 Architecture Workshop Proceedings, CMU, Pittsburgh, PA.

Port, D. (1998), Integrated Systems Development Methodology, Telos Press (to appear).
Rational (1997) Rational Objectory Process, Version 4.1, Rational Software Corp., Santa

Clara, CA.
Royce, W.E. (1998), Unified Software Management, Addison Wesley (to appear).

8. BIOGRAPHY

Barry Boehm is the TRW Professor of Software Engineering and Director of the Center for
Software Engineering at the University of Southern California. His current research
involves the WinWin groupware system for software requirements negotiation,
architecture-based models of software quality attributes, and the COCOMO II cost-
estimation model. Boehm received a BA in mathematics from Harvard University and an
MS and PhD in mathematics from the University of California at Los Angeles. He is an
AIAA Fellow, an ACM Fellow, an IEEE Fellow, and a member of the National Academy
of Engineering.

1. The MBASE Life Cycle Architecture Milestone Package 19

Dan Port is currently a Research Assistant Professor at the University of Southern California

and Research Associate with the Center Software Engineering. Prior to this he served as
the Director of Technology at EC2, the Multimedia Business Incubator Project at the
Annenberg Center for Communications, tenured at NeXT Computer, Inc. and founded
several small technology enterprises. His primary research interests lie in component and
object oriented architectures, systems integration, and partially ordered event structures.
He is the principle author of Integrated Systems Architecture Development (ISAD) and he
received his Ph.D. in Applied Mathematics at the Massachusetts Institute of Technology
where he specialized in combinatorics and probability, as well as software architectures
and numerical algorithms.

Alexander Egyed is a PhD student at the Center for Software Engineering at the University of

Southern California. His research interests are in software architecture, design, and
requirements elicitation. He received a Dipl.-Ing. in Informatics from the Johannes Kepler
University in Linz, Austria and a MS in Computer Science from the University of
Southern California. He is a student member of the IEEE and ACM.

Marwan Abi-Antoun is an M.S. student at the Center for Software Engineering at the

University of Southern California, doing Directed Research to improve the content and the
instrumentation of the Software Engineering I and II courses. His research interests are in
business systems analysis, design and implementation.

